شناسایی ترکیب غیرمسلط عوامل کنترلی در مسئله ی چندپاسخه با استفاده از شبکه ی عصبی مصنوعی و الگوریتم ژنتیک

Authors

مهدی بشیری

گروه مهندسی صنایع،دانشگاه شاهد امیر فرشباف گرانمایه

گروه مهندسی صنایع، دانشگاه شاهد

abstract

شروع{چکیده} یافتن بهترین ترکیب عوامل کنترلی برای بهینه سازی توأمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضادند، یکی از مهم ترین نیازهای مسائل صنعتی است. روش معمول برای حل این گونه مسائل استفاده از رگرسیون چندجمله یی برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالی که شبکه ی عصبی مصنوعی در حالاتی که این روابط پیچیده باشد قابلیت مناسب تری از خود نشان می دهند. در این نوشتار، برخلاف حالت های به کار برده شده، متغیرهای پاسخ به عنوان ورودی و عوامل کنترلی به عنوان خروجی شبکه ی عصبی مصنوعی در نظر گرفته شده اند تا با ترکیب شبکه ی عصبی مصنوعی، تکنیک محدودیت جزئیپانویس{$v a r e p s i l o n$-c o n s t r a i n t} و الگوریتم ژنتیک بتوان ترکیبات غیرمسلط کارایی در مسئله ی چندپاسخه ارائه داد. قابلیت روش ارائه شده در قالب مثال عددی بیان شده است که نشان دهنده ی کارایی روش پیشنهادی نسبت به سایر رویکردهای موجود است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

شناسایی ترکیب غیرمسلط عوامل کنترلی در مسئله‌ی چندپاسخه با استفاده از شبکه‌ی عصبی مصنوعی و الگوریتم ژنتیک

شروع{چکیده} یافتن بهترین ترکیب عوامل کنترلی برای بهینه‌سازی توأمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضادند، یکی از مهم‌ترین نیازهای مسائل صنعتی است. روش معمول برای حل این‌گونه مسائل استفاده از رگرسیون چندجمله‌یی برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالی که شبکه‌ی عصبی مصنوعی در حالاتی که این روابط پیچیده باشد قابلیت مناسب‌تری از خود نشان می‌دهند. در این نوشتار، ...

full text

شناسایی ترکیب غیرمسلط عوامل کنترلی در مسأله چندپاسخه با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

در بیشتر مسائل صنعتی نیازمند یافتن بهترین ترکیب عوامل کنترلی برای بهینه سازی همزمان چندین متغیر پاسخ که اکثراً با یکدیگر در تضاد می باشند، هستیم. روش معمول برای حل اینگونه مسائل استفاده از رگرسیون چندجمله ای برای شناسایی روابط بین عوامل کنترلی و متغیرهای پاسخ است، در حالیکه شبکه عصبی مصنوعی (ann) در حالاتی که این روابط پیچیده باشد قابلیت مناسبتری از خود نشان می دهند. عملکرد شبکه عصبی مصنوعی به ش...

15 صفحه اول

پیش بینی قیمت سهام در بازار بورس اوراق بهادار با استفاده از شبکه ی عصبی فازی و الگوریتم های ژنتیک و مقایسه ی آن با شبکه ی عصبی مصنوعی

    سرمایه گذاری در سهام عرضه شده در بورس اوراق بهادار یکی از گزینه ­های پرسود در بازار سرمایه است.  بازار سهام دارای سیستمی غیرخطی و آشوب گونه است که تحت تأثیر شرایط سیاسی، اقتصادی و روانشناسی می ­باشد و می­ توان از سیستم ­های هوشمند غیرخطی همچون شبکه ­های عصبی مصنوعی، شبکه­ های عصبی فازی و الگوریتم ­های ژنتیک برای پیش ­بینی قیمت سهام استفاده نمود. در این مقاله به طراحی و ارائه ­ی یک مدل پیش ب...

full text

پیش‌بینی شاخص سهام با استفاده از ترکیب شبکه عصبی مصنوعی و مدل‌های فرا ابتکاری جستجوی هارمونی و الگوریتم ژنتیک

هدف پژوهش حاضر پیش‌بینی شاخص قیمت بورس اوراق بهادار تهران با استفاده از مدل شبکه عصبی هیبریدی مبتنی بر الگوریتم ژنتیک و جستجوی هارمونی است. مربوط‌ترین نماگرهای تکنیکی به عنوان متغیرهای ورودی و تعداد بهینه نرون در لایه پنهان شبکه عصبی مصنوعی با استفاده از الگوریتم‌های فراابتکاری ژنتیک و جستجوی هارمونی حاصل می‌گردد. مقادیر روزانه شاخص قیمت بورس اوراق بهادار تهران از تاریخ 1/10/91 الی 30/9/94 جهت ...

full text

مدل‌سازی فرایند تبدیل خشک متان به‌کمک پلاسما با استفاده از شبکه عصبی مصنوعی و الگوریتم ژنتیک

 پیش‌بینی فراورده‌های (هیدروژن و کربن مونوکسید) تبدیل خشک متان به‌کمک پلاسما در فشار جوی با استفاده از شبکه عصبی مصنوعی شبیه‌سازی شد. داده‌های تجربی موردنیاز برای مدل‌سازی شبکه عصبی مصنوعی از یک واکنشگاه پلاسمایی تخلیه کرونا جمع‌آوری شد. اثر عامل‌های فرایندی (توان تخلیه پلاسما، دبی خوراک ورودی) بر کارایی تبدیل متان و گزینش‌پذیری نسبت به فراورده‌های مورد بررسی قرار گرفتند. شبکه پیش‌خور با الگوری...

full text

My Resources

Save resource for easier access later


Journal title:
مهندسی صنایع و مدیریت

جلد ۲۰۱۴، شماره ۱.۲، صفحات ۱۱-۱۹

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023